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Bulk viscosity in the case of the interatomic potential depending on density
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We derive a formula for the bulk viscosityin a density-dependent-potential system. This is a generalization
of the bulk-viscosity formula for the density-independent-potential system which has been proposed recently
by us. In our formulas, the bulk viscosity is expressed by using microscopic quantities such as interatomic
potentials and pair distribution functions. This has an outstanding advantage of providing the relation between
such microscopic information and a macroscopic quarntityOn the other hand, in all formulas proposed
previously,{ is expressed in terms of pressure, a macroscopic quantity, and it is difficult to discuss this relation.
We apply our formula to a model liquid metal in which the interatomic potential varies with density. Our
calculated results show thatincreases in the density region where the interatomic potential changes from one
type to another. These results agree qualitatively with the experimental results about liquid mercury.
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[. INTRODUCTION formulate the macroscopic quantity in terms of micro-
scopic information such as interatomic potentials and atomic
The bulk viscosity/ of a fluid is related to the difference pair distribution functions. We have achieved this task re-
between the pressupé under compression or expansion andcently in the case of interatomic potentials, which are inde-
the pressure under no volume changg; also depends on pendent of density.
the compression spe¢dl]. The bulk viscosity is described as  In this paper, we propose the generalized form of this
follows. Let us consider twiN-particle systems, denoted by formula to density-dependent-potential systems. The consid-
1 and 2. Suppose that system 1 is either compressed or esration of the density dependence of interatomic potentials
panded adiabatically, then its volume changes gradually, sajgfecomes important in metallic systems where the existence
from V+6V/2 to V—6V/2 during the time intervaldt, of mobile electrons inevitably makes interionic potentials
where| 5V|<V andéV is either positive or negative depend- density dependent. It must be definitely kept in mind that,
ing on whether the system is compressed or expanded. Thighen we say, “interatomic potentials depend on density,”
naturally means that system 1 is in a nonequilibrium statethis density is by no means the number density,,, of at-
When the volume becomes exacWyduring this volume- oms(or to be more precise the number density, of ions in
changing process, we write the pressure and the total energlye case of a metallic systenbut is rather the number den-
of system 1 ap’ andE, respectively. We assume that systemsity n, of mobile electrons. Since, in general,=zn,om, Z
2 is in an equilibrium state with a constant volurieand  being the valence number, the formulations derived there-
total energyE, which is the same value as that in system 1from are often expressed for simplicity in terms wf;,
when the volume becomes exactly We write the pressure instead ofn,, which occasionally causes a misunderstand-
in system 2 asp. The bulk viscosity{ is defined as the ing. Though it may sound superfluous to mention this point,
coefficient in the linear relation between the volume-we nevertheless feel it worthwhile to emphasize that the ori-
changing ratev/V in system 1 and the pressure differencegin for the density dependence of interatomic potentials is

p’—p and is expressed as mobile electrons. The present paper is the first work that
evaluates{ in systems with density-dependent pair poten-
p/ —p=— {V/V, (1) tials.

In all conventional methods proposed in the last centfry,
o is expressed in terms of pressure, which is a macroscopic
whereV=lim ,6V/ét. quanﬁty. Among them are Iioncluded the Green-Kubo formul%t
The bulk viscosity is one of the transport coefficients in [4—7], the Heyes metho[B,9] and the Hooveet al. method
the constitutive equations of hydrodynamics. Several experir10,11]. On the other hand, our formula demonstrated in a
mental studies have shown that the bulk viscosity plays ageries of paper$12,13 is advantageous as stated in the
important role in understanding acoustics on the microscopiabove in the sense thdt is directly derived from micro-
level [2,3]. As a consequence, it is an interesting task toscopic quantities such as interatomic potentials. The relation-
ship among these conventional methods and our formula has
been discussed at full length in ofi&3] of our previous
*Present address: Department of Theoretical Studies, Institute fgpapers.
Molecular Science, Myodaiji, Okazaki 444-8585, Japan. Electronic The outline of the present paper is stated as follows. In
address: hokumura@ims.ac.jp Sec. Il, we provide a physical insight into the mechanism
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that is responsible for the bulk viscosity, and give a review of i
our recently proposed formula fdr described by the inter-
atomic potential and the pair distribution functigi2,13. In

Sec. lll, we explain the concept and significance of density-
dependent potentials, particularly in connection with the pos-
sibility of applications to metallic fluids, and derive a for-
mula for ¢ to be useful for potentials dependent on density.
In Sec. IV, we propose a density-dependent model potential
of liquid mercury and apply the new formula to model po-
tential. We then calculat¢ in this system by performing
molecular dynamic§MD) simulations on the basis of the
formula we have obtained. We also give detailed discussions
by placing much emphasis on the compression between our
theoretical results and the experimental data. Concluding re-
marks are found in Sec. V.
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Il. FORMULA FOR THE BULK VISCOSITY IN A SYSTEM
WITH DENSITY-INDEPENDENT POTENTIALS Distance r

i
i
]

E)
i
[
r
[+
X3
[
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
!
1
1
H

For the sake of convenience to our main purpose in the FIG. 1. The qualitative interpretation of the origin of the bulk
present paper, we first give a brief review of the derivation ofviscosity. During compression of fluidg(r,t) is also compressed
our previous formula for the bulk viscosity in a density- and the peak position is shifted away from that of the equilibrium
independent system. do(r,p) to the inside. This results in the movement of the,t)

An important point to make is that an authentic micro- peak to the strong repulsive position and makes the nonequilibrium
scopic quantity characteristic of a system is interatomic poPressurep’ higher than the equilibrium pressupe
tentials, which, throughout the series of our papers, we ap-
proximate by the sum of pair potentiags(r,p), wherer is In order to analyze the effects of the volume change on
the distance between the particles under consideration. Equi{r:t), it is convenient to divide the time derivative of
librium atomic distribution functions such as an equilibrium 9(r,t) into two terms, such that the first term represents
pair distribution function are determined from the inter- form contraction or expansiofi4,15 due to the compres-
atomic potentiajs for any pair of thermodynamic quantitieS'Sion, while the second term takes Cal’(? of the difference be-
say, for densityy=mN/V, wherem s the particle mass and tween the effects of accurate and uniform volume change.
entropyS. All volume changes are performed adiabatically in FOr simplicity, we assume that the second term is governed
this paper. Therefore, the entropy is regarded as constant Y the Debye relaxation with a single relaxation time. The
the linear response theory. We then omit argun@ftom  Debye relaxation is the simplest type of relaxation and is
our expressions; for example, the pair distribution function isvidely used as an appropriate approximati@rg]. As a re-
described agy(r,p) instead ofg(r,p,S), where subscript 0 sult, we obtain the time evolution @f(r,t) in the form
denotes the equilibrium state. On the other hand, in the non- 5001 1) S ag(rD) L

g ; ) . r, r
equilibrium system, during compression or expansion, the ( g P ( g ) —;{g(r,t)—go(r,p)},
t

pair distribution functiorg(r) changes with time. Therefore, at r_ﬁr ar

we write it asg(r,t). (3)
To explain the origin of the bulk viscosity, it is convenient

to use the well-known virial equation: wherer is the relaxation time of(r,t).

In order to solve the time development of E®), we
. NkgT p? = de(r) ) carry out a perturbation expansion of the nonequilibrium
TV em? o dr g(r,t)4mredr, (2 g(r,t) from the equilibrium go(r,p). The difference of
g(r,t) from go(r,p) is important only when the fluid is com-

wherekg is the Boltzmann constari, is temperature. In the pressed more slowly than, that is, 7|p|/p<1. This is be-
case of compression, for exampggr ,t) is also compressed cause the bulk viscosity is only observed experimentally un-
in the sense that the nonequilibriug(r,t) is shifted towards der this condition[2,3,16. We then takerp/p as a
smaller values of when compared tgy(r,p) as shown in perturbation-expansion parameter and finally represent the
Fig. 1. This means that the peakg(fr,t) moves towards the nonequilibriumg(r,t) in terms of equilibriumgy(r,p),
region ofr where the pair potentiap(r) is more repulsive,
and accordingly,—d¢(r)/dr is larger. Therefore, Eq(2) p ago(r,p) ago(r,p)
indicates that this shift makes the nonequilibrium presptre ~ 9(r.t)=go(r.p) + 73—| r(a—) —3P(—) ]

: o - ooF p r ap
higher than the equilibrium pressupe This is a qualitative '

p

p

interpretation of the origin of the bulk viscosity. A discussion p 2
analogous to this is of course possible in the case of expan- +O||7—] |. 4
sion as well. p
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In order to derive the expression of bulk viscosity using 1
Eq. (4), we calculate the difference between the pressure QNZWJ J expl—BPn(ry, ... In,V)Hrg ... dry
during the compression and that of the equilibrium system. Y v

In the case of a system in whiah(r) does not depend on VN r1 1

density, the pressure is calculated frayfr,t) by the virial = WJ J exp{— BON(VHs,, ... VY5, V)}
theorem(2). According to the definition of the bulk viscosity, "0 0

a discussion must take place about the difference of the pres- X ds;- - - dsy. (8)

sure in system 1, which is compressed adiabatically and

gradually from that in the volume-constant system 2. Therhe coordinates of atoms are scaled;asV'?s for the vol-

pressure in system 1 must be compared to that of the equirme derivative ofQy in Eq. (7). Accordingly, the volume
librium system 2, which has the same total energy, volumegeriyative ofQ, is determined as

and number of particles. For this reason, the temperature
during the adiabatic compression is different from the tem-
perature of the equilibrium system. We calculate these two

N
(S’Q_N) —EQN_IB%fl. _.flefﬁé,\,(v”?’sl,.‘.,vl/?’s,\,,V)
- JO 0

temperatures using the fact that the value of the total energy Ny V
is the same in these systems. As a consequence, we get a oD
formula for the bulk viscosity from the pressure difference X—NdSl' - dsy, 9
" aVv
p'—p as
where®, is the total potential energy in tié-body system.
p? > de(r) In the case wherep(r) does not depend on density, it is
==Tam o | Tar 20 written as
390(r .p) 390(1.p) ) 1o <
xir|————] =3p| ———| t4mridr. (5 Oy(rV)=2 2> D (1)), (10
a /, ), 23 7

(N) _ . .
The Debye relaxation is assumed in this derivation. HOW_\(,jv:r?\thEve ooll(epn((?t)eis’fhceall\llcﬁla;;[:accljebcoordlnates. The volume
ever, we can show that our formula is exactly equivalent to y

the Green-Kubo formula and the Heyes method, by deter- NN
mining 7 as 1SSy d¢(rij) _ (11)

= Ap(t
:j Ldt, (6) In the case whereg(r) depends on density, i.e., on volume
o Ap(+0) V, the total potential energ®(r™N),V) is written as
N N
whereAp(t) is the difference between the presspig) at (N) v/ }
time t after the sudden compression and the presp(ve Oy V) = 2& JEI é(rij.V). (12

after reaching equilibrium, i.e.Ap(t)=p(t)—p(*) [13].

Ap(+0) is the difference between the presspfet0) just  Then, the volume derivative @by, is described by
after the sudden compression ap¢). This formula was

applied to the Lennard-Jones fluid near its triple point in 4, 1 NN ab(r: d(r:
Refs.[12,13. The obtained value shows excellent agreement—— = — > > ‘ (rij M) +(VM) ]
with the results of the Green-Kubo formula and the Heyes J 6V =1 17 anij v N r
method. (13

The pressure in this system includes an extra term
Ill. FORMULA FOR THE BULK VISCOSITY IN A V[d¢(r,V)/aV], in addition to the pressure in a density-
SYSTEM WITH DENSITY-DEPENDENT POTENTIALS independent-potential system. According to E{$. (9), and
(13), the pressure in the density-dependent-potential system

Before deriving the expression of the bulk viscosity in ecomes

density-dependent potentials, we derive the expression o
pressure in this system. The definition of pressure is given by NkgT n? m(( IB(r, V) IB(r,V)
: ) e

v r

P=—NV " "%, FY;

d
JF\  keT[dQu '
p=- <—8V) ~on <_(9V >T= @) X go(r,V)4mr2dr. (14)

This equation is rewritten by using denspyinstead of vol-
whereQy is a configurational partition function expressed byumeV in the form
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10
_ NkgT  p? jw L9rp)) [ dd(r.p)
V 6m2Jo ar ) p ap . 5 |
X go(r,p)Amr2dr. (15 g 0
The nonequilibriumg(r,t) in this system is also ex- g 57
pressed as Ed4). By using Eq.(15) in lieu of Eq. (2), our 10t
formula for £ in the ¢(r,p) system finally becomes
-15 : :
P F 9¢(1.p) 2 Yot ’
18mZT . ar ) r[A]
FIG. 2. The interatomic potentials;(r) and¢,(r). The dashed
+26(r,p)—| 3 dp(r,p) line is ¢4(r) in the high density region calculated by Jank and
P p ap . Hafner[18]. The solid line is the Lennard-Jones potentalr) in

the low density region.

This density dependence 6fp) is presented in Fig. 3.
In this dependence o(r,p) on p, our formula for¢

In the case whereh(r,p) does not depend on density, this finally becomes

equation results in Eq5) becausel¢(r,p)/dp=0.

X[r((ng(r,p)) _Sp((?gO(rvp)

2
ar p )r]4wr dr. (16

p

p?  [=[ [a¢(r.p)
IV. APPLICATION {= Lo’ Tfo {r< T p+2¢(r,p)
A. Model potential df(p)
Density-dependent potentials are frequently used as mod- —3pd—p[¢>1(r)— do(1)]
els of liquid metals[17]. As an example of a density- P
dependent potential, we propose a model potential of liquid 990(T+p) 990(T+p)
mercury. We compare our results with experimental daia of X [ r —) —3p(—’> ]4wr2dr. (19
in mercury, measured from the sound attenuation coefficient o p ap r
[2,3]. We assume that the density dependence of the potential
is defined by Equation(16) is generally used in the density-dependent po-
tential. On the other hand, E(L9) is an expression only for
d(r,p)=F(p)p1(r)+[1—1(p)]a(r), (17 the system in which the potential dependence is written as
where ¢,(r) and ¢,(r) are two different kinds of density- Ea. (17
independent potentials. Functidfp) with the range of val-
ues O<f(p)=<1 is introduced to describe the transition of the B. Molecular dynamics simulations
potential frome,(r) to ¢,(r) asf(p) changes from unity to In order to evaluatg(r,p) andr in our formula, micro-

zero. For our purpose of investigating the change/ @c-  canonical MD simulations are performed under the following
companying the metal-to-nonmetINM) transition on the  conditions. The number of particlé$ is 256 with periodic
decrease in density, it is appropriate to assume #&t)  boundary conditions in the cubic unit cell with side length
and¢,(r) are potential for the high and low density regions, The temperature is set to 1800 K. The time stepdts

respectively. Asp,(r), we choose the mercury potential cal- =56 fs. The equation of motion is integrated by the sixth-
culated by Jank and Hafngt8], while as¢,(r) we use the

Lennard-Jones potential. We take the Lennard-Jones param- 15
eters such that the depi=1326 K, and the diametew
=2.63 A, determined by fitting the Lennard-Jones critical

temperature and critical density9—21 to the experimental 1oy

values of those for mercury. These potentials are shown in -

Fig. 2. 2057
In liquid mercury, the MNM transition occurs gb

=8-9 gl/cnt [22,23. We therefore propose a simple model 0.0

for f(p) according to the decrease pf from metallic to
nonmetallic values in the form

0.5 : : : '
4 6 8 10 12
2(p—9)/9 (10<p=<13.5 g/cnd) p lg/emd]
_ _g)2
f(p)=1 (p—8)718 (8<p=10 glem) (18) FIG. 3. Functionf(p) describing the potential change from
0 (p<8 glcn?). $1(r) to ¢y(r).
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3 T 250 region with a peak gb=9.5 g/cnt. This figure also contains
T 2l @) 1200 the experimental values af in liquid mercury, which are
g ‘1. e estimated from the sound attenuation coefficientand the
£ 41 £y # 1100 sound velocity datd2,3]. The critical attenuation is sepa-
et iSRRI rated from the normal sound attenuation coeffic[@df. The
0 0 experimental data also has a peak in the MNM transition
oo | {_.{ ®) ] region. Although_the e_xperimental data are_hundred times
Z oy ] . larger than the simulation results, the behavior of our bulk-
® 0.05 | . ] viscosity data agrees qualitatively with the experimental re-
! sults. This explains the peak ¢ftheoretically.
0.00 In order to investigate the behavior of the bulk viscosity
= 20l .9 in more detail, we also show, in Fig. 4, the resultsradind
g Jote {/ 7, including the integral of Eq19). The discussion on the
S 10t R ] reason for the increase i is conducted in the following
Loe way for the two density regiondl) p<9.5 g/cn? and(2) p
°5 6 s 10 12 1 >9.5 glend.

p [glem?] . . .
1. Analysis concerning the behavior af for p<9.5 gcm®

_FIG. 4. The dz_ensity_dependence @ £ (b) 7, and(c) ‘U/_T' In this low density region{ increases according to the
Filled circle, the simulation results; open triangle, the experlmenta|rlC

A " ) rease irp. The increase ii§/ 7 in this region is as much as
results for liquid mercury. These results agree qualitatively with one_. . . . .
another. nine times, while the increase inis only by a factor 1.6.

Among other features, the increase @fr gives the most

dominant contribution to the increasegrwithin this region.
order Gear’s predictor-corrector algorithm. The cutoff radiusThe term containing g df(p)/dp][#1(r) — ¢,(r)] in the
rc is taken ad /2. The cutoff correction is made for pressure integrand is zero at a density lower than 8 gicifhis term

and potential energy. takes nonzero values only in the region of the densjty (
For the purpose of calculating the density derivative of>8 g/cn?) and causes the increasedrin this region.
the pair distribution functio@gg(r,p)/dp, we perform MD The bulk viscosity originates from the fact that the peak

simulations in two systems with slightly different densities position of the nonequilibriung(r,t) is shifted away from
and p+Ap(Ap/p=0.02), and calculategy(r,p) and that of the equilibriumgy(r,p) towards smaller values of
go(r,p+Ap) so that we approximate the derivative by the Because of this movement, the nonequilibrium presptrie
difference divided byAp. higher than the equilibrium pressupeas shown in Fig. 1. In

The time steps are taken as follows. First, microcanonicabur model, the interatomic potential depends on density. The
MD simulations are performed at the equilibrium for 200 repulsive part ofs(r,p) moves towards larger values 0by
steps in the density. The pair distribution functiom(r,p) the compression, while thg(r,t) shifts towards smaller val-
is determined from these simulations. Secondly, for the purues ofr as in Fig. 5. As a consequence, the nonequilibrium
pose of estimatingr and [dgo(r,p)/dp],, the volume is pressure p’ is much higher than that in a density-
changed uniformly, instantaneously, and adiabatically. Thirdindependent-potential system, and the bulk viscosity in-
we continue the MD simulations over 400 steps for the obcreases in the transition region @{r). In other words, the
servation of the pressure relaxation. The relaxation tin® increase ir is caused by the density dependence(f,p),
estimated by making use of E¢6), which describes the and is expressed by the term  containing
pressure relaxation from an instantaneous to equilibriunBpdf(p)/dp[ p,(r)— ¢o(r)].
value. Finally, microcanonical MD simulations are per-
formed at the equilibrium over 200 steps in dengity Ap. 2. Analysis concerning the behavior af for p>9.5 gen?®
The equilibrium pressurp(e) at p+Ap andgqy(r,p+Ap)
is determined from these simulations.

In order to improve the statistical accuracy, MD simula-
tions are performed by starting from 1600 different initial
conditions. For the purpose of estimating the error bar, w
divide the results of the 1600 initial conditions into two sets,
each starting from different 800 initial conditions. Two val- . . .
ues of 7 are determined from these two different sets Ofthe larger value of by the increase of density. This move-

results. The error bar is determined from the standard devi érenetr n;?\?jn?h(tahzttc:ges ?:f(fﬁlic(;gew?tﬁeing ;?1itr?(t=,\?mrrslokr)(aecf? (r;e
tion of these two values af. 9

quently. The relaxation time, therefore, becomes shorter.

As described above, we explained the increase mecha-
nism of / in the density region op=9-10 g/cri. It be-

The simulated results of the bulk viscosifyare shown in  comes possible only by our formula to discuss the origin of
Fig. 4. We observe that it increases in the MNM transitionthe increase of from thep dependence of(r,p) in detall

According to the increase of density beyong
=9.5 g/cnt, ¢ decreases. The most dominant contribution in
this region comes fromr rather than fromy/ 7. The integral

art for /7 is almost constant. On the other handde-
creases to one-third of the valuet 9.5 g/cni. This phe-
nomenon is explained as follows. The repulsive part shifts to

C. Results and discussion
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i V. CONCLUSION
<—— During Compression
Now- i} We derive a formula for the bulk viscosityin a density-
B dependent-potential system. This is a generalization of the
| Eavilibriom bulk-viscosity formula for the density-independent system
: which we have proposed recently. The bulk viscosity is ex-
pressed in terms of microscopic quantities such as inter-
: atomic potentials and pair distribution functions in our for-
mula. This is an outstanding advantage when compared to
i Distancer the previously proposed formulas, in all of whi¢his ex-
pressed in terms of pressure. We apply our formula to a

Pair Distribution Function g(r)

: model liquid metal in which the interatomic potential varies
&) at p+Ap with density. We show thaf increases in the density region
: where the interatomic potential changes from nonmetallic to
metallic. This result agrees qualitatively with the experimen-
tal results of liquid mercury. The increase ois caused by
the shift of the interatomic potential towards larger values of
r. This shift leads td1) the increase of/r in the region of
_ _ Distancer p=8-10 g/cni and (2) the decrease of in the region of
FIG. 5. _The illustration of the behavior af(r,p) andg(r,t). p>9.5 g/cnt. We conclude that this is the mechanism for
The repulsive part of(r,p) moves towards larger values oby  iha increase of the bulk viscosityin the MNM transition
the compression while accorr_]_pa_nying thér,t) _shifts towards region.
fgﬁ";;ﬁgf; gfe'nzne_?n%neelur:'(;er']‘:_mopt’;i?;‘lj‘:{ 'f r:1u°h higher In order to deal with liquid metals by MD simulations, we
y P P ystem. have used the model of the pair potential depending on den-
sity. Besides this kind of model, there is also the method with
a3 functional of the electronic density, such as the embedded
atom method?25,26]. In the latter method, however, the ther-
Smodynamic guantitiegenergy, pressure, etcare not de-
cribed by pair distribution functions. The embedded atom
ethod is, therefore, not capable of being incorporated with
our formula. The behavior of liquid mercury is essentially
explained by the model of the pair potential depending on
ensity.

o)t p\:

1
'
Il
1
1
'
1

1

K
s
1
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H

Potential Energy ¢(r)

as presented in this paper. By the previous methods, it w
not possible to investigate thé& increase mechanism, be-
cause’ is not described in terms of microscopic properties a:
is the case by our method.

The experimental value is hundred times larger than th
of our simulation results. In real mercury, all atoms do not
transform at the same time from a metallic to nonmetallic
state at a certain density, as assumed in a model syste
There exist both metallic clusters and nonmetallic clusters
simultaneously in the MNM transition region. These clusters
cause group motions of atoms, and the relaxation time be- ACKNOWLEDGMENTS
comes longer. As a result, the bulk viscosity is expected to be
larger. If we take the effects of such metallic clusters into The authors are grateful to Professor Yao and Dr. Kohno
account, the quantitative gap between the experimental arfdr providing the experimental results about the sound at-
theoretical values will be narrowed concerning the relaxatiortenuation coefficients in liquid mercury prior to publication.
time and the peak height in Therefore, a remarkable point We thank Professor Tsuji, Professor No& . Omata, Dr.
is that even a simple model as ours can reproduce the beha¥amaguchi, Dr. Hattori, H. Sueyoshi, J. Koga, and K. Nishio
ior of £, in general, and the existence of the peak, in particufor valuable discussions. H.O. was supported by the Japan
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