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Bulk viscosity in the case of the interatomic potential depending on density
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We derive a formula for the bulk viscosityz in a density-dependent-potential system. This is a generalization
of the bulk-viscosity formula for the density-independent-potential system which has been proposed recently
by us. In our formulas, the bulk viscosity is expressed by using microscopic quantities such as interatomic
potentials and pair distribution functions. This has an outstanding advantage of providing the relation between
such microscopic information and a macroscopic quantityz. On the other hand, in all formulas proposed
previously,z is expressed in terms of pressure, a macroscopic quantity, and it is difficult to discuss this relation.
We apply our formula to a model liquid metal in which the interatomic potential varies with density. Our
calculated results show thatz increases in the density region where the interatomic potential changes from one
type to another. These results agree qualitatively with the experimental results about liquid mercury.
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I. INTRODUCTION

The bulk viscosityz of a fluid is related to the differenc
between the pressurep8 under compression or expansion a
the pressurep under no volume change;z also depends on
the compression speed@1#. The bulk viscosity is described a
follows. Let us consider twoN-particle systems, denoted b
1 and 2. Suppose that system 1 is either compressed o
panded adiabatically, then its volume changes gradually,
from V1dV/2 to V2dV/2 during the time intervaldt,
whereudVu!V anddV is either positive or negative depen
ing on whether the system is compressed or expanded.
naturally means that system 1 is in a nonequilibrium sta
When the volume becomes exactlyV during this volume-
changing process, we write the pressure and the total en
of system 1 asp8 andE, respectively. We assume that syste
2 is in an equilibrium state with a constant volumeV and
total energyE, which is the same value as that in system
when the volume becomes exactlyV. We write the pressure
in system 2 asp. The bulk viscosityz is defined as the
coefficient in the linear relation between the volum
changing rateV̇/V in system 1 and the pressure differen
p82p and is expressed as

p82p52zV̇/V, ~1!

whereV̇[ lim
dt→0

dV/dt.

The bulk viscosityz is one of the transport coefficients i
the constitutive equations of hydrodynamics. Several exp
mental studies have shown that the bulk viscosity plays
important role in understanding acoustics on the microsco
level @2,3#. As a consequence, it is an interesting task

*Present address: Department of Theoretical Studies, Institut
Molecular Science, Myodaiji, Okazaki 444-8585, Japan. Electro
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formulate the macroscopic quantityz in terms of micro-
scopic information such as interatomic potentials and ato
pair distribution functions. We have achieved this task
cently in the case of interatomic potentials, which are ind
pendent of density.

In this paper, we propose the generalized form of t
formula to density-dependent-potential systems. The con
eration of the density dependence of interatomic potent
becomes important in metallic systems where the existe
of mobile electrons inevitably makes interionic potentia
density dependent. It must be definitely kept in mind th
when we say, ‘‘interatomic potentials depend on densit
this density is by no means the number densitynatom of at-
oms~or to be more precise the number densitynion of ions in
the case of a metallic system!, but is rather the number den
sity ne of mobile electrons. Since, in general,ne5znatom, z
being the valence number, the formulations derived the
from are often expressed for simplicity in terms ofnatom
instead ofne , which occasionally causes a misunderstan
ing. Though it may sound superfluous to mention this po
we nevertheless feel it worthwhile to emphasize that the
gin for the density dependence of interatomic potentials
mobile electrons. The present paper is the first work t
evaluatesz in systems with density-dependent pair pote
tials.

In all conventional methods proposed in the last centurz
is expressed in terms of pressure, which is a macrosc
quantity. Among them are included the Green-Kubo form
@4–7#, the Heyes method@8,9# and the Hooveret al. method
@10,11#. On the other hand, our formula demonstrated in
series of papers@12,13# is advantageous as stated in t
above in the sense thatz is directly derived from micro-
scopic quantities such as interatomic potentials. The relat
ship among these conventional methods and our formula
been discussed at full length in one@13# of our previous
papers.

The outline of the present paper is stated as follows.
Sec. II, we provide a physical insight into the mechani
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H. OKUMURA AND F. YONEZAWA PHYSICAL REVIEW E 67, 021205 ~2003!
that is responsible for the bulk viscosity, and give a review
our recently proposed formula forz described by the inter
atomic potential and the pair distribution function@12,13#. In
Sec. III, we explain the concept and significance of dens
dependent potentials, particularly in connection with the p
sibility of applications to metallic fluids, and derive a fo
mula for z to be useful for potentials dependent on dens
In Sec. IV, we propose a density-dependent model poten
of liquid mercury and apply the new formula to model p
tential. We then calculatez in this system by performing
molecular dynamics~MD! simulations on the basis of th
formula we have obtained. We also give detailed discuss
by placing much emphasis on the compression between
theoretical results and the experimental data. Concluding
marks are found in Sec. V.

II. FORMULA FOR THE BULK VISCOSITY IN A SYSTEM
WITH DENSITY-INDEPENDENT POTENTIALS

For the sake of convenience to our main purpose in
present paper, we first give a brief review of the derivation
our previous formula for the bulk viscosity in a densit
independent system.

An important point to make is that an authentic micr
scopic quantity characteristic of a system is interatomic
tentials, which, throughout the series of our papers, we
proximate by the sum of pair potentialsf(r ,r), wherer is
the distance between the particles under consideration. E
librium atomic distribution functions such as an equilibriu
pair distribution function are determined from the inte
atomic potentials for any pair of thermodynamic quantiti
say, for densityr[mN/V, wherem is the particle mass an
entropyS. All volume changes are performed adiabatically
this paper. Therefore, the entropy is regarded as consta
the linear response theory. We then omit argumentS from
our expressions; for example, the pair distribution function
described asg0(r ,r) instead ofg(r ,r,S), where subscript 0
denotes the equilibrium state. On the other hand, in the n
equilibrium system, during compression or expansion,
pair distribution functiong(r ) changes with time. Therefore
we write it asg(r ,t).

To explain the origin of the bulk viscosity, it is convenie
to use the well-known virial equation:

p85
NkBT

V
2

r2

6m2E0

`

r
df~r !

dr
g~r ,t !4pr 2dr, ~2!

wherekB is the Boltzmann constant,T is temperature. In the
case of compression, for example,g(r ,t) is also compressed
in the sense that the nonequilibriumg(r ,t) is shifted towards
smaller values ofr when compared tog0(r ,r) as shown in
Fig. 1. This means that the peak ofg(r ,t) moves towards the
region of r where the pair potentialf(r ) is more repulsive,
and accordingly,2df(r )/dr is larger. Therefore, Eq.~2!
indicates that this shift makes the nonequilibrium pressurep8
higher than the equilibrium pressurep. This is a qualitative
interpretation of the origin of the bulk viscosity. A discussio
analogous to this is of course possible in the case of exp
sion as well.
02120
f

-
-

.
al

ns
ur
e-

e
f

-
p-

ui-

,

in

s

n-
e

n-

In order to analyze the effects of the volume change
g(r ,t), it is convenient to divide the time derivative o
g(r ,t) into two terms, such that the first term representsuni-
form contraction or expansion@14,15# due to the compres
sion, while the second term takes care of the difference
tween the effects of accurate and uniform volume chan
For simplicity, we assume that the second term is gover
by the Debye relaxation with a single relaxation time. T
Debye relaxation is the simplest type of relaxation and
widely used as an appropriate approximation@2,3#. As a re-
sult, we obtain the time evolution ofg(r ,t) in the form

S ]g~r ,t !

]t D
r

5
ṙ

3r
r S ]g~r ,t !

]r D
t

2
1

t
$g~r ,t !2g0~r ,r!%,

~3!

wheret is the relaxation time ofg(r ,t).
In order to solve the time development of Eq.~3!, we

carry out a perturbation expansion of the nonequilibriu
g(r ,t) from the equilibrium g0(r ,r). The difference of
g(r ,t) from g0(r ,r) is important only when the fluid is com
pressed more slowly thant, that is,tuṙu/r!1. This is be-
cause the bulk viscosity is only observed experimentally
der this condition @2,3,16#. We then take tṙ/r as a
perturbation-expansion parameter and finally represent
nonequilibriumg(r ,t) in terms of equilibriumg0(r ,r),

g~r ,t !5g0~r ,r!1t
ṙ

3r H r S ]g0~r ,r!

]r D
r

23rS ]g0~r ,r!

]r D
r
J

1OS F t
ṙ

r
G2D . ~4!

FIG. 1. The qualitative interpretation of the origin of the bu
viscosity. During compression of fluids,g(r ,t) is also compressed
and the peak position is shifted away from that of the equilibriu
g0(r ,r) to the inside. This results in the movement of theg(r ,t)
peak to the strong repulsive position and makes the nonequilibr
pressurep8 higher than the equilibrium pressurep.
5-2
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BULK VISCOSITY IN THE CASE OF THE . . . PHYSICAL REVIEW E 67, 021205 ~2003!
In order to derive the expression of bulk viscosity usi
Eq. ~4!, we calculate the difference between the press
during the compression and that of the equilibrium syste
In the case of a system in whichf(r ) does not depend on
density, the pressure is calculated fromg(r ,t) by the virial
theorem~2!. According to the definition of the bulk viscosity
a discussion must take place about the difference of the p
sure in system 1, which is compressed adiabatically
gradually from that in the volume-constant system 2. T
pressure in system 1 must be compared to that of the e
librium system 2, which has the same total energy, volum
and number of particles. For this reason, the tempera
during the adiabatic compression is different from the te
perature of the equilibrium system. We calculate these
temperatures using the fact that the value of the total ene
is the same in these systems. As a consequence, we
formula for the bulk viscosityz from the pressure differenc
p82p as

z52
r2

18m2
tE

0

` H r
df~r !

dr
12f~r !J

3H r S ]g0~r ,r!

]r D
r

23rS ]g0~r ,r!

]r D
r
J 4pr 2dr. ~5!

The Debye relaxation is assumed in this derivation. Ho
ever, we can show that our formula is exactly equivalen
the Green-Kubo formula and the Heyes method, by de
mining t as

t5E
0

` Dp~ t !

Dp~10!
dt, ~6!

whereDp(t) is the difference between the pressurep(t) at
time t after the sudden compression and the pressurep(`)
after reaching equilibrium, i.e.,Dp(t)5p(t)2p(`) @13#.
Dp(10) is the difference between the pressurep(10) just
after the sudden compression andp(`). This formula was
applied to the Lennard-Jones fluid near its triple point
Refs.@12,13#. The obtained value shows excellent agreem
with the results of the Green-Kubo formula and the Hey
method.

III. FORMULA FOR THE BULK VISCOSITY IN A
SYSTEM WITH DENSITY-DEPENDENT POTENTIALS

Before deriving the expression of the bulk viscosity
density-dependent potentials, we derive the expression
pressure in this system. The definition of pressure is given

p52S ]F

]VD5
kBT

QN
S ]QN

]V D
T

, ~7!

whereQN is a configurational partition function expressed
02120
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QN5
1

N! EV
•••E

V
exp$2bFN~r1 , . . . ,rN ,V!%dr1 . . . drN

5
VN

N! E0

1

•••E
0

1

exp$2bFN~V1/3s1 , . . . ,V1/3sN ,V!%

3ds1•••dsN . ~8!

The coordinates of atoms are scaled asr i[V1/3si for the vol-
ume derivative ofQN in Eq. ~7!. Accordingly, the volume
derivative ofQN is determined as

S ]QN

]V D
T

5
N

V
QN2b

VN

N! E0

1

•••E
0

1

e2bFN(V1/3s1 ,•••,V1/3sN ,V)

3
]FN

]V
ds1•••dsN , ~9!

whereFN is the total potential energy in theN-body system.
In the case wheref(r ) does not depend on density, it
written as

FN~r(N)!5
1

2 (
i 51

N

(
j Þ i

N

f~r i j !, ~10!

where r(N) denote theN-particle coordinates. The volum
derivative ofF(r ) is calculated by

]FN

]V
5

1

6V (
i 51

N

(
j Þ i

N

r i j

df~r i j !

dri j
. ~11!

In the case wheref(r ) depends on density, i.e., on volum
V, the total potential energyFN(r(N),V) is written as

FN~r(N),V!5
1

2 (
i 51

N

(
j Þ i

N

f~r i j ,V!. ~12!

Then, the volume derivative ofFN is described by

]FN

]V
5

1

6V (
i 51

N

(
j Þ i

N H S r i j

]f~r i j ,V!

]r i j
D

V

1S V
]f~r i j ,V!

]V D
r
J .

~13!

The pressure in this system includes an extra te
V@]f(r ,V)/]V#, in addition to the pressure in a densit
independent-potential system. According to Eqs.~7!, ~9!, and
~13!, the pressure in the density-dependent-potential sys
becomes

p5
NkBT

V
2

n2

6 E
0

`H S r
]f~r ,V!

]r D
V

1S 3V
]f~r ,V!

]V D
r
J

3g0~r ,V!4pr 2dr. ~14!

This equation is rewritten by using densityr instead of vol-
umeV in the form
5-3
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p5
NkBT

V
2

r2

6m2E0

`H S r
]f~r ,r!

]r D
r

2S 3r
]f~r ,r!

]r D
r
J

3g0~r ,r!4pr 2dr. ~15!

The nonequilibriumg(r ,t) in this system is also ex
pressed as Eq.~4!. By using Eq.~15! in lieu of Eq. ~2!, our
formula for z in the f(r ,r) system finally becomes

z52
r2

18m2
tE

0

`H S r
]f~r ,r!

]r D
r

12f~r ,r!2S 3r
]f~r ,r!

]r D
r
J

3H r S ]g0~r ,r!

]r D
r

23rS ]g0~r ,r!

]r D
r
J 4pr 2dr. ~16!

In the case wheref(r ,r) does not depend on density, th
equation results in Eq.~5! because]f(r ,r)/]r50.

IV. APPLICATION

A. Model potential

Density-dependent potentials are frequently used as m
els of liquid metals@17#. As an example of a density
dependent potential, we propose a model potential of liq
mercury. We compare our results with experimental data oz
in mercury, measured from the sound attenuation coeffic
@2,3#. We assume that the density dependence of the pote
is defined by

f~r ,r![ f ~r!f1~r !1@12 f ~r!#f2~r !, ~17!

wheref1(r ) and f2(r ) are two different kinds of density
independent potentials. Functionf (r) with the range of val-
ues 0< f (r)<1 is introduced to describe the transition of t
potential fromf1(r ) to f2(r ) as f (r) changes from unity to
zero. For our purpose of investigating the change ofz ac-
companying the metal-to-nonmetal~MNM ! transition on the
decrease in density, it is appropriate to assume thatf1(r )
andf2(r ) are potential for the high and low density region
respectively. Asf1(r ), we choose the mercury potential ca
culated by Jank and Hafner@18#, while asf2(r ) we use the
Lennard-Jones potential. We take the Lennard-Jones pa
eters such that the depthe51326 K, and the diameters
52.63 Å, determined by fitting the Lennard-Jones critic
temperature and critical density@19–21# to the experimenta
values of those for mercury. These potentials are show
Fig. 2.

In liquid mercury, the MNM transition occurs atr
58 –9 g/cm3 @22,23#. We therefore propose a simple mod
for f (r) according to the decrease ofr from metallic to
nonmetallic values in the form

f ~r!5H 2~r29!/9 ~10,r<13.5 g/cm3!

~r28!2/18 ~8,r<10 g/cm3!

0 ~r<8 g/cm3!.

~18!
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This density dependence off (r) is presented in Fig. 3.
In this dependence off(r ,r) on r, our formula for z

finally becomes

z52
r2

18m2
tE

0

`H r S ]f~r ,r!

]r D
r

12f~r ,r!

23r
d f~r!

dr
@f1~r !2f2~r !#J

3H r S ]g0~r ,r!

]r D
r

23rS ]g0~r ,r!

]r D
r
J 4pr 2dr. ~19!

Equation~16! is generally used in the density-dependent p
tential. On the other hand, Eq.~19! is an expression only for
the system in which the potential dependence is written
Eq. ~17!.

B. Molecular dynamics simulations

In order to evaluateg0(r ,r) andt in our formula, micro-
canonical MD simulations are performed under the followi
conditions. The number of particlesN is 256 with periodic
boundary conditions in the cubic unit cell with side lengthL.
The temperature is set to 1800 K. The time step isdt
55.6 fs. The equation of motion is integrated by the six

FIG. 2. The interatomic potentialsf1(r ) andf2(r ). The dashed
line is f1(r ) in the high density region calculated by Jank a
Hafner@18#. The solid line is the Lennard-Jones potentialf2(r ) in
the low density region.

FIG. 3. Function f (r) describing the potential change from
f1(r ) to f2(r ).
5-4
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BULK VISCOSITY IN THE CASE OF THE . . . PHYSICAL REVIEW E 67, 021205 ~2003!
order Gear’s predictor-corrector algorithm. The cutoff rad
r c is taken asL/2. The cutoff correction is made for pressu
and potential energy.

For the purpose of calculating the density derivative
the pair distribution function]g0(r ,r)/]r, we perform MD
simulations in two systems with slightly different densitiesr
and r1Dr(Dr/r50.02), and calculateg0(r ,r) and
g0(r ,r1Dr) so that we approximate the derivative by t
difference divided byDr.

The time steps are taken as follows. First, microcanon
MD simulations are performed at the equilibrium for 20
steps in the densityr. The pair distribution functiong0(r ,r)
is determined from these simulations. Secondly, for the p
pose of estimatingt and @]g0(r ,r)/]r# r , the volume is
changed uniformly, instantaneously, and adiabatically. Th
we continue the MD simulations over 400 steps for the
servation of the pressure relaxation. The relaxation timet is
estimated by making use of Eq.~6!, which describes the
pressure relaxation from an instantaneous to equilibr
value. Finally, microcanonical MD simulations are pe
formed at the equilibrium over 200 steps in densityr1Dr.
The equilibrium pressurep(`) at r1Dr andg0(r ,r1Dr)
is determined from these simulations.

In order to improve the statistical accuracy, MD simu
tions are performed by starting from 1600 different init
conditions. For the purpose of estimating the error bar,
divide the results of the 1600 initial conditions into two se
each starting from different 800 initial conditions. Two va
ues of z are determined from these two different sets
results. The error bar is determined from the standard de
tion of these two values ofz.

C. Results and discussion

The simulated results of the bulk viscosityz are shown in
Fig. 4. We observe that it increases in the MNM transiti

FIG. 4. The density dependence of~a! z, ~b! t, and ~c! z/t.
Filled circle, the simulation results; open triangle, the experime
results for liquid mercury. These results agree qualitatively with o
another.
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region with a peak atr59.5 g/cm3. This figure also contains
the experimental values ofz in liquid mercury, which are
estimated from the sound attenuation coefficientsa and the
sound velocity data@2,3#. The critical attenuation is sepa
rated from the normal sound attenuation coefficient@24#. The
experimental data also has a peak in the MNM transit
region. Although the experimental data are hundred tim
larger than the simulation results, the behavior of our bu
viscosity data agrees qualitatively with the experimental
sults. This explains the peak ofz theoretically.

In order to investigate the behavior of the bulk viscos
in more detail, we also show, in Fig. 4, the results oft and
z/t, including the integral of Eq.~19!. The discussion on the
reason for the increase inz is conducted in the following
way for the two density regions~1! r,9.5 g/cm3 and ~2! r
.9.5 g/cm3.

1. Analysis concerning the behavior ofz for rË9.5 gÕcm3

In this low density region,z increases according to th
increase inr. The increase inz/t in this region is as much a
nine times, while the increase int is only by a factor 1.6.
Among other features, the increase ofz/t gives the most
dominant contribution to the increase inz within this region.
The term containing 3r@d f(r)/dr#@f1(r )2f2(r )# in the
integrand is zero at a density lower than 8 g/cm3. This term
takes nonzero values only in the region of the densityr
.8 g/cm3) and causes the increase inz in this region.

The bulk viscosity originates from the fact that the pe
position of the nonequilibriumg(r ,t) is shifted away from
that of the equilibriumg0(r ,r) towards smaller values ofr.
Because of this movement, the nonequilibrium pressurep8 is
higher than the equilibrium pressurep as shown in Fig. 1. In
our model, the interatomic potential depends on density.
repulsive part off(r ,r) moves towards larger values ofr by
the compression, while theg(r ,t) shifts towards smaller val-
ues ofr as in Fig. 5. As a consequence, the nonequilibriu
pressure p8 is much higher than that in a density
independent-potential system, and the bulk viscosity
creases in the transition region off(r ). In other words, the
increase inz is caused by the density dependence off(r ,r),
and is expressed by the term containi
3rd f(r)/dr@f1(r )2f2(r )#.

2. Analysis concerning the behavior ofz for rÌ9.5 gÕcm3

According to the increase of density beyondr
59.5 g/cm3, z decreases. The most dominant contribution
this region comes fromt rather than fromz/t. The integral
part for z/t is almost constant. On the other hand,t de-
creases to one-third of the value atr59.5 g/cm3. This phe-
nomenon is explained as follows. The repulsive part shifts
the larger value ofr by the increase of density. This move
ment means that the effective sizes of the atoms bec
larger and the atoms collide with one another more f
quently. The relaxation timet, therefore, becomes shorter.

As described above, we explained the increase mec
nism of z in the density region ofr59 –10 g/cm3. It be-
comes possible only by our formula to discuss the origin
the increase ofz from ther dependence off(r ,r) in detail

l
e
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H. OKUMURA AND F. YONEZAWA PHYSICAL REVIEW E 67, 021205 ~2003!
as presented in this paper. By the previous methods, it
not possible to investigate thez increase mechanism, be
causez is not described in terms of microscopic properties
is the case by our method.

The experimental value is hundred times larger than
of our simulation results. In real mercury, all atoms do n
transform at the same time from a metallic to nonmeta
state at a certain density, as assumed in a model sys
There exist both metallic clusters and nonmetallic clust
simultaneously in the MNM transition region. These clust
cause group motions of atoms, and the relaxation time
comes longer. As a result, the bulk viscosity is expected to
larger. If we take the effects of such metallic clusters in
account, the quantitative gap between the experimental
theoretical values will be narrowed concerning the relaxat
time and the peak height inz. Therefore, a remarkable poin
is that even a simple model as ours can reproduce the be
ior of z, in general, and the existence of the peak, in parti
lar, in thez-r curve.

FIG. 5. The illustration of the behavior off(r ,r) and g(r ,t).
The repulsive part off(r ,r) moves towards larger values ofr by
the compression while accompanying theg(r ,t) shifts towards
smaller values ofr. The nonequilibrium pressurep8 is much higher
than that for a density-independent-potential system.
J.

.
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V. CONCLUSION

We derive a formula for the bulk viscosityz in a density-
dependent-potential system. This is a generalization of
bulk-viscosity formula for the density-independent syste
which we have proposed recently. The bulk viscosity is e
pressed in terms of microscopic quantities such as in
atomic potentials and pair distribution functions in our fo
mula. This is an outstanding advantage when compare
the previously proposed formulas, in all of whichz is ex-
pressed in terms of pressure. We apply our formula to
model liquid metal in which the interatomic potential vari
with density. We show thatz increases in the density regio
where the interatomic potential changes from nonmetallic
metallic. This result agrees qualitatively with the experime
tal results of liquid mercury. The increase ofz is caused by
the shift of the interatomic potential towards larger values
r. This shift leads to~1! the increase ofz/t in the region of
r58 –10 g/cm3 and ~2! the decrease oft in the region of
r.9.5 g/cm3. We conclude that this is the mechanism f
the increase of the bulk viscosityz in the MNM transition
region.

In order to deal with liquid metals by MD simulations, w
have used the model of the pair potential depending on d
sity. Besides this kind of model, there is also the method w
a functional of the electronic density, such as the embed
atom method@25,26#. In the latter method, however, the the
modynamic quantities~energy, pressure, etc.! are not de-
scribed by pair distribution functions. The embedded at
method is, therefore, not capable of being incorporated w
our formula. The behavior of liquid mercury is essentia
explained by the model of the pair potential depending
density.
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